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Abstract. An iterative method which determines the low-lying eigenvalues of a Hermitian 
operator defined in a finite-dimensional vector space is extended to a specific type of 
unbounded Hermitian operator defined in a Hilbert space. As an illustrative numerical 
example the extended algorithm has been applied to the quantum mechanical harmonic 
oscillator problem. 

1. Introduction 

In the last few years iterative algorithms have been used extensively to obtain 
acceptable approximations for the low-lying eigenstates of a quantum mechanical 
system (see the list of references given by Stewart (1974) or Berger (1979)). These 
algorithms are usually formulated for Hermitian operators defined in a finite-dimen- 
sional vector space and can also be extended to compact Hermitian operators defined in 
a Hilbert space (Vorobyev 1965). However, in most cases of interest the Hamiltonian 
of a quantum mechanical system is a Hermitian operator possessing a spectrum with a 
lower bound only. Hence in order to make use of such algorithms a projection of the 
Hamiltonian onto a finite-dimensional subspace of the entire Hilbert space is required. 

To avoid this projection and the subsequent errors inherent in the eigenstates 
obtained in this manner we have extended the simple 2 x 2  algorithm described 
previously by us (Berger et a1 1977) to include also unbounded Hermitian operators. In 
this case iterations can be performed with the full (that is the unprojected) Hamiltonian 
provided that this operator possesses a special kind of continuity and that an appro- 
priate trial vector is available. 

In this paper we reformulate the algorithm and prove its convergence properties. 
Furthermore we make some remarks about error estimates and the occurrence of 
pseudoconvergence. An application to a well-known Hamiltonian illustrates the 
numerical behaviour of the present algorithm. 

2. The extended 2 x 2  algorithm 

2.1. Statement of the algorithm 

Let %' be a separable Hilbert space and fi a Hermitian operator having a discrete 
spectrum with a lower bound only. Let $27 be the domain of fi and E and IET) its 
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eigenvalues and eigenvectors respectively. The index T labels a possible degeneracy of 
the eigenvalues. Furthermore let 1 T )  E 9 be a vector normalised to unity, the so-called 
trial vector. The expansion of the trial vector in terms of the eigenvectors is given by 

or equivalently as 

IT> = c tElE) 
E 

where all eigenvectors and expansion coefficients corresponding to the same eigenvalue 
E are collected in the normalised vectors \ E )  and in the coefficients tE, that is 

with 
1/2 

tE = (; IfE-l') 

The algorithm is now defined by the following steps: 
(i) From the given trial vector construct the orthonormal vectors 

I@i) := IT) 

Linear independence of IT) and A / T )  is guaranteed if the trial vector is not an 
eigenvector of A. 

spanned by IOl) and la2) in order to obtain the 
orthonormal vectors 

(ii) Diagonalise I? in the subspace 

Here the diagonal matrix elements V I  and v 2  are real since A is a Hermitian operator. 
The off -diagonal matrix element w is also real since its square is nothing more than the 
variance of fi with respect to the trial vector, that is 

w2=(TIA21T)-(TIA[T)2. (2.9) 

(iii) Choose the vector lel) as a new trial vector and restart at step (i). 
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The algorithm defines the sequences ( w  ( I ) ) ,  ( e l ( I ) )  and ( le l ( I ) ) )  whose convergence 
properties are given by 

lim e l ( l )  =ET 

lim w (I) = 0 

lim l e l ( I ) )  = / E T ) .  

I-03 

1-03 

1-03 

(2.10) 

(2.11) 

(2.12) 

Here ET is the lowest eigenvalue that corresponds to the eigenvector /ET) contained in 
the expansion (2.2) of the trial vector. 

To prove the statements (2.10), (2.11) and (2.12) we cannot proceed as in the 
original case of a bounded Hermitian operator since there we used essentially the fact 
that the sequence ( v 2 ( I ) )  is bounded. In the present case of an unbounded Hermitian 
operator this is not guaranteed, except in the trivial case where the trial vector contains 
only a finite number of eigenvectors. The proof of the convergence properties of the 
extended 2 x 2 algorithm requires that the trial vector IT) and the operator f? must be 
assumed to satisfy additional restrictions. These are that A is positive and 7-continuous 
in 2 and IT) is contained in 9. Here 2 is defined to be the space of all finite linear 
combinations of eigenvectors of f?. 7-continuity of f? is continuity with respect to the 
topology which is defined by the additional scalar products in 2 

( 4 I ~ ) k  := <4ifik14), k = 0 , 1 , 2 , 3  , , . .  (2.13) 

and 9 is defined to be the completion of 2 with respect to this topology, that is 

9 := 2 U {limits of all 7- Cauchy sequences of 2) (2.14) 

or equivalently 

Requiring f? to be positive ensures that ( I ) k  has indeed the properties of a scalar 
product while 7-continuity of fi in 2 guarantees that f? possesses a unique (7- 
continuous) extension onto 9, Hence 9 is included in the domain of fi and for every 
IT) E 9 the vectors AkIT) are defined for all k = 1 , 2 , 3 , .  . . . This guarantees that an 
arbitrary number of iterations can actually be performed. Note that 7-continuity of A 
does not imply the usual continuity and hence does not contradict the unboundedness of 
fi. This stems from the fact that the set of Cauchy sequences in 2 is larger than the set of 
~ C a u c h y  sequences in 2 T .  

2.2. Proof of convergence 

The proof given below can be briefly outlined as follows. The sequences ( e l ( 1 ) )  and 
((ETlel(1)))  can be shown to be convergent with limits x and y. If (lel(l))) is 7-Cauchy 
then the iterative structure of the algorithm requires that the limit is an eigenvector of 
f?. Therefore it is guaranteed that zero is an accumulation point of (~'(1)). This finally 
implies that x =ET and y = 1 and hence that ( le l ( I ) ) )  and (~(1)) converge to ]ET) and 
zero. We now give the proof in detail. 

t For further details and references see Bohm (1978). 
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2.2.1. Proof that (el(l))  and ((ETlel(l))) converge. From relation (2.8) and step (iii) of 
the algorithm we obtain 

ET < e l ( l )  < e l ( l  - 1) < ( ~ / f i I  T) .  (2.16) 

Hence (el( l ) )  is bounded and monotonically decreasing and therefore must converge to 
some x with ET< x <(TIfiIT). From equations (2.5) and (2.6) and step (iii) of the 
algorithm we obtain 

(2.17) 

For E =ET relation (2.16) guarantees that the right-hand side of equation (2.17) is 
greater than 1. This together with the fact that (ETIT) is real and positive and that IET) 
and lel(l)) are normalised to unity implies that ((ETlel(l))) is real, positive, mononotic- 
ally increasing and bounded by the values (ETIT) and 1. Consequently ((ETlf?l(r))) 
converges to some y with (ETI T )  < y < 1. 

2.2.2. Proof that if (iel(I))) is 7-Cauchy then its limit is contained in 9, normalised to 
unity, and an eigenvector of fi. Let I?) be the limit vector of (lel(l))). The first two 
statements follow from the fact that 9 is complete Yith respect to the 7-topology and 
that all vectors lel(1)) are normalised to unity. Since H is 7-continuous the convergence 
of (lel(l))) implies the convergence of (fiklel(l))) for each k = 1 , 2 , 3 . .  . . Since 
expectation value and variance are continuous functionals, (~~,~(l)), (~(1)) and (el( l ) )  
are also convergent with limits C 1 p ,  G, El which are related by (see equation (2.7)) 

El  = ;(a, + 61) - (G’ + :(a, - c1)2)1/2. (2.18) 

From the algorithm we have v l ( l )  = e l ( l  - 1) and therefore dl = E l .  This implies that 
6 = 0 which means that I?) is an eigenvector of a. 
2.2.3. Proof that zero is an accumulation point of (~‘(1)). Suppose zero is not an 
accumulation point. From step 1 of the proof, we obtain 

and inserting this into equation (2.17) 

(2.19) 

(2.20) 

From relation (2.20) and from the fact that for arbitrary large but fixed value of k the 
sequence ( E k ( E l e l ( l ) ) )  is real and bounded we conclude that ((EIfiklel(l))) converges 
for all IE). This implies that ( l e i ( l ) ) )  is 7-Cauchy and, according to step 2 of the proof, its 
limit is an eigenvector of I?. Hence (~’(1)) converges to zero, since the variance is a 
continuous functional. But this contradicts the assumption that zero is not an accumu- 
lation point of (~’(1)). Hence zero must be an accumulation point. 

2.2.4. Proof that x =ET, y = 1, IET) = lim~-,mlel(l)) and 0 = limI+mw(l). Step 3 of the 
proof guarantees the existence of a partial sequence (~’(1~)) which converges to zero. 
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Since w2(lj) is the variance of A with respect to /el(lj - l)), 

o = lim ~ ’ ( 4 )  
j+m 

2649 

= lim 1 (Elel(lj - l))’(E - el( l j  - 1))’ 
j+m E 

and 

(2.21) 

1 = 1 (Elel(Ij - 1))* (2.22) 
E 

since lel& - 1)) is normalised. According to step 1 of the proof we have 

x = lim el(Ij - 11, y = lim (ETlel(lj - I). 
j+m j+m 

(2.23) 

From these equations we infer that x = ET and y = 1, since all other values of x and y 
would contradict equation (2.21) or equation (2.22). The value y = 1 implies that 

2.3. Error estimates and the numerical problem of pseudoconvergence 

The convergence properties of the algorithm imply that ET can be determined with an 
arbitrary degree of accuracy. In practice, however, one can perform only a finite 
number of iterations. The eigenvalue ET is then approximated by the expectation value 
el(Imax). Besides this upper bound for ET a lower bound may also be obtained. 
According to Kat0 (1949) the interval 

includes at least one eigenvalue of 
yields the relation 

for any 14) E 9. In the present algorithm this 

(2.25) 

where E is one of the eigenvalues that corresponds to the eigenvectors \ E )  contained in 
the expansion (2.2). In the region where the sequences (e l ( I ) )  and (~(1)) have already 
reached their limits ET and zero within some small interval the inequality (2.25) 
demonstrates that v l ( I ) - w ( I )  is a lower bound for ET. If after I,,, iterations the 
sequence (e l ( I ) )  has almost converged the eigenvalue ET is then contained in the small 
interval (Vl( Imax)  - w(Imax), e i (ImaX)) .  

In the 2 x 2  algorithm as in most iterative algorithms the numerical problem of 
pseudoconvergence may occur. In this case the expectation value e l ( I )  approaches an 
eigenvalue Epseudo > ET and remains constant for a number of iterations. Furthermore 
the variance of the vectors lel(I))  and their overlap with the eigenvector jEpseudo) exhibit 
simultaneously a local minimum and maximum respectively. At this iteration step the 
vector lel(I)) represents an approximation to the eigenvector IEpseudo). In the case of 
pseudoconvergence the eigenvalue Epseudo itself can be specified within a small interval 
which is given by relation (2.25). As can be seen from previous calculations with the 
2 x 2 algorithm (Berger eta1 1977) pseudoconvergence occurs whenever the trial vector 

V l ( I )  - w (I) zz E U l ( I )  + w ( I )  
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IT) has the property that one or more of its components in the eigenvectors IE) are large 
compared to the rest. The fact that the variance of the vectors lel(])) does not decrease 
monotonically with increasing number of iterations merely provides a means to identify 
pseudoconvergence in practical calculations. Instead of trying to obtain the final 
convergence in the conventional manner, that is by performing more iterations or to 
begin with another trial vector, the 2 x 2  algorithm may be modified in a manner 
suggested in one of our previous publications (Miller and Berger 1979). In this case 
pseudoconvergence is more easily identified and as soon as it occurs it may be 
eliminated. 

3. Application to a well-known problem 

In order to demonstrate the numerical behaviour of the 2 x 2  algorithm when it is 
applied directly to the full Hamiltonian of a quantum mechanical system, we have 
considered a well-known one-particle system, the harmonic oscillator in one dimen- 
sion. In coordinate representation the eigenvalue problem of the Hamiltonian reads 

and has the well-known solution 

where 5 = (h2/2m)-'i4x and H n ( [ )  are the Hermite polynomials. 
For this Hamiltonian the space 9 consists of the states which are represented by the 

infinitely differentiable functions ( x  I T )  which together with their derivatives tend to 
zero for 1x1 + 03 more rapidly than any power of l/lxl, and in this space the Hamiltonian 
is 7-continuous (Bohm 1978). Thus we choose the trial state to be a wave packet of the 
form 

(3.4) 

Here a is a normalisation constant, y = (7?2/2m)-'/2 and the real parameter p deter- 
mines the width of the wave packet. For p = 1 the trial state is just the exact groundstate 
of the Hamiltonian and for p # 1 this parameter can be interpreted as a measure of the 
difference between the trial state and the exact groundstate. In the case /3 # 1 one can 
easily show that (EolT) does not vanish. Therefore, starting with this trial state, 
application of the 2 x 2 algorithm should yield the groundstate of the system and its 
groundstate energy. The choice of our trial state is most appropriate since it is closely 
related to the asymptotic form of the exact eigenstaLes, especially to the exact 
groundstate. Furthermore it has the property that for (xjH'IT) and ( x l e l ( I ) )  recursion 
relations in terms of functions a (x), x2a (x), . . . , x"a(x) may be given. The existence of 
such recursion relations simplifies the numerical calculation considerably. 

The convergence rate of the sequences ( e l ( I ) ) ,  (~(1)) and ((ETlel(I))) for different 
values of p is given in figure 1. Here it can be seen that the convergence rate improves 

( x l ~ )  = a exp ( - p y x 2 / 2 )  =: a(x ) .  
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1 

lo-' 

lo-: 0 5 10 15 20 

i 
Figure 1. Plot of the quantities (el(Z)) (a ) ,  (w(Z)) (b ) ,  
((Eolel(Z))) ( c )  as afunction of iteration number I for 
different values of p :  A, p = 3 ;  B p = 5 ;  C, p = 8 .  

1 I 1 
0 5 10 15 Units are chosen such that t i2/2m = 1. 

as p approaches 1. This, of course, corresponds to the fact that the closer the parameter 
p is to 1, the larger the overlap of the trial state with the exact groundstate. 

If we choose a trial state of the form 

( x l ~ j  = a(1+ looox + x ' + .  . . + x 9 +  IOOOX'~) exp ( - y x 2 / 2 )  (3.5) 

where the parameters a and y have the same meaning as in equation (3.4), the trial state 
contains a non-vanishing component of the groundstate \Eo) and also a large 
component of the first excited state ( E l )  and pseudoconvergence may be expected to 
occur. Indeed, as can be seen in figure 2; the expectation values remain constant in the 
interval 3 s I s 8 and the local extrema for the variance and the overlap occur at I = 5 
and I = 6. From relation (2.25) the eigenvalue Epseudo lies in the interval [2*63, 3.361. 
This, of course, corresponds to E l  = 3, the energy of the first excited state. 

4. Summary and discussion 

The present investigation demonstrates that the 2 x 2 algorithm can be reformulated 
and its convergence properties can be proved even in a Hilbert space for Hermitian 
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Figure 2. Plot of the quantities (el(Z)) (curve A, scale I ) ,  ( w ( Z ) )  curve B, scale ZZ) 
((Ellel(Z)))  (curve C ,  scale IZZ), ((Eolel(Z))) (curve D, scale ZZZ) in the case where 
pseudoconvergence occurs. 

operators which are bounded only from below, provided the trial vector and the 
operator satisfy additional restrictions. 

The advantage for quantum mechanical applications is that the actual groundstate 
and corresponding groundstate energy of a given Hamiltonian can be determined, 
provided that the trial state has a non-vanishing overlap with the groundstate. 
Furthermore the magnitude of this overlap determines to a large extent the con- 
vergence rate. This may at most be retarded by the occurrence of pseudoconvergence. 

In practice the application of the 2 x 2 algorithm for a given Hamiltonian requires 
that there is an appropriate trial state available, that is a state belonging to the space 9. 
This space, however, is generally not easy to specify unless, of course, the eigenvalue 
problem of the Hamiltonian has already been solved. Iterating with the full (unpro- 
jected) Hamiltonian in either its coordinate or momentum representation restricts at 
present the applicability of the algorithm to quantum mechanical systems which can be 
described by a small number of coordinates. 
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